L-TEAM
L-TEAM SOCIAL MEDIA
  • HOME
  • ΤΟ ΠΑΙΧΝΙΔΙ ΤΟΥ ΧΡΗΜΑΤΟΣ
  • Blog
  • E-BOOKS
  • ΠΑΓΚΟΣΜΙΟ ΕΙΣΟΔΗΜΑ
  • Motivation
  • LIBRARY
  • ABOUT

το BLOG μας

Σημείο δημοσίευσης άρθρων σχετικά με την ανάπτυξη της επιχείρησης μας, περί εμποδίων, περί ηγεσίας, περί ευτυχίας και όχι μόνο..

YouTube Channel

​Το πρόβλημα και το βαρόμετρο

8/9/2019

0 Comments

 
Σε ένα πανεπιστήμιο των ΗΠΑ ζητήθηκε από τους φοιτητές της φυσικής να λύσουν το εξής πρόβλημα:
"​Πώς μπορείτε να χρησιμοποιήσετε ένα βαρόμετρο για να υπολογίσετε το ύψος ενός ψηλού κτιρίου;​"​


Picture

​Η “σωστή” απάντηση (και θα καταλάβετε σύντομα προς τι τα εισαγωγικά), η απάντηση που ήθελε ο καθηγητής και έδωσαν όλοι οι φοιτητές πλην ενός, ήταν να μετρηθεί η πίεση του αέρα στην κορυφή και στη βάση του κτιρίου και από τη διαφορά -με τη χρήση του κατάλληλου τύπου- να βρεθεί το ύψος.

Όμως κάποιος σπουδαστής είχε μια διαφορετική ιδέα: “Δένω το βαρόμετρο σε ένα σκοινί και το κατεβάζω ως το δρόμο. Το μήκος του σκοινιού είναι προφανώς ίσο με το ύψος του κτιρίου.”

Ο καθηγητής βρέθηκε σε δύσκολη θέση. Ο φοιτητής είχε δώσει σωστή απάντηση, αφού στη διατύπωση δεν αναφερόταν τίποτα για την πίεση του αέρα ή για τη μη-χρήση σκοινιών.
Ζήτησε τη βοήθεια ενός άλλου καθηγητή και συμφώνησαν ότι ο φοιτητής έπρεπε να απαντήσει ξανά στην ερώτηση, προκειμένου να δείξει ότι έχει γνώσεις φυσικής. Ο φοιτητής δεν είχε καμία αντίρρηση. 

Τους έδωσε πέντε καινούριες απαντήσεις:
1) Ρίχνεις το βαρόμετρο από την κορυφή του κτιρίου και χρονομετράς την πτώση. Έπειτα με τη χρήση του τύπου S=1/2at² υπολογίζεις το ύψος του κτιρίου.

2) Μια ηλιόλουστη μέρα βγάζεις το χρονόμετρο έξω και μετράς το ύψος του, το μήκος της σκιάς του και το μήκος της σκιάς του κτιρίου, και μετά, με τη χρήση απλής αναλογίας υπολογίζεις το ύψος του.

3) Παίρνεις το βαρόμετρο και αρχίζεις να ανεβαίνεις τις σκάλες. Χρησιμοποιείς το βαρόμετρο ως μονάδα μέτρησης για να μετρήσεις το ύψος κάθε σκαλοπατιού. Πολλαπλασιάζεις τα σκαλιά με το ύψος του βαρόμετρου και έχεις το ύψος του κτιρίου.

4) Στερεώνεις το βαρόμετρο στην άκρη μιας χορδής το κουνάς σαν εκκρεμές και καθορίζεις την τιμή του g (επιτάχυνση της βαρύτητας) στο επίπεδο του δρόμου και στην κορυφή του κτιρίου. Από τη διαφορά των δύο τιμών του g μπορείς να υπολογίσεις το ύψος του κτιρίου.

5) (το καλύτερο!) Πηγαίνεις στον επιστάτη του κτιρίου και του λες: “Αν μου πείτε το ύψος του κτιρίου θα σας δώσω αυτό το πολύ ωραίο βαρόμετρο.”

Ο φοιτητής πήρε άριστα.
Ο τρόπος που σκέφτηκε ο φοιτητής, στη θεωρία της νοημοσύνης καλείται “αποκλίνουσα ενόραση”.


Τις περισσότερες φορές (και οι περισσότεροι άνθρωποι) όταν αντιμετωπίζουμε ένα πρόβλημα ψάχνουμε μια λύση που μας παγιδεύει στην αρχική του διατύπωση.
Για παράδειγμα στην ερώτηση: “Πώς μπορούμε να αντιμετωπίσουμε την οικονομική κρίση στην Ελλάδα;”, οι απαντήσεις μπορούν να είναι πολύ περισσότερες απ’ όσες φανταζόμαστε, αρκεί πρώτα να κατανοήσουμε τη φύση της ερώτησης (τη φύση της κρίσης μάλλον).

Όπως το βαρόμετρο σε παγιδεύει στη λύση μέσω της μέτρησης της πίεσης, έτσι και η “οικονομική κρίση” σε παγιδεύει στη λύση μέσω της οικονομίας.

Ένα άλλο παράδειγμα αυτοπεριορισμού της σκέψης είναι το ερώτημα που έχει να κάνει με τη χρήση ενός συνδετήρα. Είναι απλό: “Με πόσους τρόπους μπορούμε να χρησιμοποιήσουμε ένα συνδετήρα;”  Σε αυτό το ερώτημα οι περισσότεροι άνθρωποι βρίσκουν πέντε έως είκοσι τρόπους.

Κάποιοι όμως (ειδικά τα παιδιά) μπορούν να βρουν έως και χίλιους πεντακόσιους τρόπους, μπορεί και περισσότερους.  Για παράδειγμα η απάντηση μπορεί να ξεκινήσει ως εξής: “Ο συνδετήρας είναι φτιαγμένος από φελιζόλ και έχει ύψος 800 μέτρα…”

Αν ξανακοιτάξετε το πρόβλημα θα δείτε ότι πουθενά δεν αναφέρεται ότι ο συνδετήρας είναι ο οικείος σε όλους συνδετήρας γραφείου. Ούτε το μέγεθος του αναφέρεται ούτε το υλικό κατασκευής (ένας χρυσός συνδετήρας φοριέται και ως κόσμημα, ένας συνδετήρας από καθαρό ουράνιο ως όπλο μαζικής καταστροφής).

Όταν, μάλιστα, έγινε μια σχετική έρευνα σε σχολεία βγήκαν τα εξής πορίσματα: τα παιδιά ηλικίας 5-8 μπορούσαν να δώσουν απεριόριστες απαντήσεις. Τα ίδια παιδιά, μετά από λίγα χρόνια εκπαίδευσης, έδιναν πολύ λιγότερες από τις μισές. Και ως ενήλικες είχαν τις συνηθισμένες 5-10 λύσεις.

Αυτό δεν μας προκαλεί εντύπωση, αφού -όπως είχε πει κάποιος συγγραφέας:
“Εκπαίδευση είναι ο τρόπος να δημιουργείς έναν ηλίθιο ενήλικα από ένα πανέξυπνο παιδί”.
​
Συμπερασματικά:
Όλα τα προβλήματα μπορούν να λυθούν με πολύ περισσότερους τρόπους από αυτούς που θεωρούμε ως τους μόνους δυνατούς, αρκεί να επανεξετάσουμε το ερώτημα και να σκεφτούμε κάπως πιο ελεύθερα.

Το αληθές αυτό περιστατικό με το βαρόμετρο υπάρχει στο βιβλίο του David Perkins, ως “Φαινόμενο Εύρηκα”.
Το όνομα του φοιτητή: ​​
Niels Bohr
, ο θεμελιωτής της Κβαντομηχανικής…
0 Comments



Leave a Reply.

      Ας γνωριστούμε καλύτερα...

    Submit

    L-TEAM

    Launching People
    γιατί κάθε όνειρο αξίζει μια ευκαιρία..


    ΑΡΧΕΙΟ

    November 2019
    October 2019
    September 2019
    August 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    January 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    September 2016
    August 2016
    July 2016
    June 2016
    May 2016
    April 2016
    March 2016
    February 2016
    January 2016
    December 2015
    November 2015
    October 2015
    September 2015
    August 2015
    July 2015
    June 2015
    May 2015
    April 2015
    March 2015
    February 2015
    January 2015
    December 2014
    November 2014
    October 2014
    September 2014
    August 2014
    July 2014
    June 2014
    May 2014


    ΚΑΤΗΓΟΡΙΕΣ

    All
    ECredit
    Thinking Out Of The Box
    Κείμενα Συνεργατών
    Μικρομεσαίες Επιχειρήσεις
    Οι σκέψεις μου
    Περί Εμποδίων
    Περί Ευτυχίας
    Περί Ηγεσίας
    Συμβουλές Ανάπτυξης
    Το παιχνίδι του Χρήματος


    RSS Feed



Proudly powered by Weebly